

Consolidated Academic Administration Plan for the Course Analog Communication (core) – Sem. V – Electronics and Telecommunication Engineering – 2017-2018 – Odd. Semester Prof. Pranita Padhye(Cluster Mentor), Prof. Beena Ballal & Prof. Harshada Rajale

The academic resources available inVIT -

VMIS (ERP)	V-Referand V-Live	VIT Library	VAC & MOOC Courses
Institute & Department	Former IA question papers and	Former IA question papers	Value Added Courses
Vision and Mission	solutions (prepared by faculty)	solutions - hardcopy	(VAC) are conducted
Program Educational	MU end semester examination	MU end semester exam	throughout the semester
Objectives (PEO)	question papers and solutions	question paper & solutions	∈ the semester break -
Objectives (PEO)	(prepared by faculty)	 by faculty, hardcopy 	Enrol for the VACs
Drogram Spacific	Class notes and Digital Content	All text books, reference	Online courses from
Program Specific Outcome (PSO)	for the subject (scanned / typed	books, e -books mentioned	NPTEL, Coursera etc. are
Outcome (PSO)	by faculty)	in the syllabus& AAP	pursued throughout the
Drogram Outcome (DO)	Comprehensive question bank,	Technical journals and	semester - Register for
Program Outcome (PO)	EQ, GQ, PPT, Class Test papers	magazines for reference	the course& get certified
Departmental	Academic Administration Plan &	VIT library is member of IIT	Watch former lectures
Knowledge Map	Beyond Syllabus Activity report	Bombay Library	captured in LMS at VIT

Course Objectives (write in detail – follow NBA guideline in this regard)

Cognitive	What do you want students to know?	Students should know the basics of Communication systems, types of modulation and demodulation.
Affective	What do you want students to think / care about?	Students should think about analog and digital modulation techniques, different types of Receivers.
Behavioural	What do you want students to be able to do?	Students should be able to develop mini projects related to different modulation techniques, Receivers.

1.b Course Outcome (CO) Statements and Module-Wise Mapping (follow NBA guideline)

Analog Communication

1.a

CO No.	Statements	Related Module/s
CO1	Students will be able to identify various types of noise which will be used for analysis of basic communication systems.	1
CO2	Students will be able to analyze, compare and contrast different continuous and Pulse modulation and demodulation techniques used in communication which will be used for various types of applications.	2,3,6
CO3	Students will be able to understand various types of Radio Transmitters and Receivers which will be used for communication.	4
CO4	Students will be able to understand and analyze sampling theorem and sampling techniques which will be used in digital communication.	5

Communication Engineering Laboratory -I

CO No.	Statements	Related Module/s
CO1	Students will be able to analyze performance and calculate modulation index of different analog modulation techniques.	1, 2, 4
CO2	Students will be able to demonstrate sampling theorem and various techniques of sampling and compare various pulse modulation schemes used for data transmission.	5, 6
CO3	Students will be able to experiment multiplexing techniques which will be used for various communication systems.	6
CO4	Students will be able to simulate various modulation techniques using modern tools.	2, 3, 4, 6

1.c

Mapping of COs with POs (mark S: Strong, M: Moderate, W: Weak, Dash '-': not mapped)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	S	М	W			W	W					
CO 2	М	S	М	W	М		W					
CO 3	М	S	S	W	М	W	S	W	W	W	М	М
CO 4	М	S	W	W	М							М

1.d

Mapping of COs with PSOs (mark S: Strong, M: Moderate, W: Weak, Dash '-':not mapped)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	М	S	М	NA
CO 2	S	S	М	NA
CO 3	S	S	М	NA
CO 4	М	S	W	NA

1.e

Teaching and Examination Scheme (As specified by the University) for the Course

Categories	Mathematics	Basic Science & General Engg.	Humanities & Soft Skill	Core Engg./Technology - Design & Analysis	Multidisciplinary
Tick suitable category	V	NA	NA	\checkmark	NA

Subject Code	Cubiect Name	Те	aching Sche	me	Credits Assigned				
Subject Code	Subject Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC 502	Analog Communication	04	02	00	04	01	00	05	

				Examination Scheme								
Subject Code	C. his at Niessa	Theory Marks IA Test			End Sem.							
Subject Code	Subject Name	IA 1	IA 2	Average of IA1 and IA2	Exam Marks	TW	Practical	Oral	Total			
ETC 502	Analog Communication	20	20	20	80	NA	NA	NA	100			

Faculty-Wise Distribution of all Lecture-Practical-Tutorial Hours for the Course

Divisions	Lecture		Practic	al (Hrs.)		Tutorial (Hrs.)				
DIVISIONS	(Hrs.)	Batch 1	Batch 2	Batch 3	Batch 4	Batch 1	Batch 2	Batch 3	Batch 4	
Α	BRB-04	02-BRB	02-BRB	02-BRB	02-BRB	NA	NA	NA	NA	
В	BRB-04	02-HAR	02-HAR	02-HAR	02-PCR	NA	NA	NA	NA	
с	HAR-04	02- MKN	02-MKN	02-ASR	02-ASR	NA	NA	NA	NA	

1.f

Office Hours (Faculty will be available in office in this duration for solving students' query)

Division	Day	Time (at least 1 Hr. / Division)	Venue (Office Room No.)
А	Tuesday	3.45 to 4.45 pm	M-415 (EXTC Staff Room)
В	Wednesday	3.45 to 4.45 pm	M-415 (EXTC Staff Room)
С	Thursday	10.00 to 11.00 am	M-415 (EXTC Staff Room)

2.a

Syllabus : Module Wise Teaching Hours and % Weightage in University Question Paper

Module No.	Module Title and Brief Details	Teaching Hrs. for each module	% Weightage in University Question Papers
1	Basic communication system : Block diagram, Electromagnetic spectrum, Signal Bandwidth and power, Types of communication channels. Noise in Communication systems, Signal-to-Noise ratio, Noise factor and Noise Figure, Equivalent Noise Temperature	4	8%
2	 2.1 Amplitude modulation and demodulation: Basic concept , signal representation, need for modulation, spectrum, waveform, modulation index, bandwidth, voltage distribution and power calculation 2.2 DSBFC Spectrum, waveforms, modulation index, bandwidth, voltage distribution, and power calculation 2.3 DSBFC: Principles, modulating circuits, low level and high level transmitters.DSB suppressed carrier:- Multiplier modulator, nonlinear modulator, and switching modulator, Single Side Band (SSB):-Principle, Filter method, phase shift method and third method. Quadrature amplitude modulation (QAM), Independent sideband (ISB) and Vestigial Side Band (VSB) principles and transmitters 2.4 Amplitude demodulation: Diode detector, practical diode detector, and square law detector. 2.5 Applications of AM and use of VSB in broadcast television 	12	23%
3	Angle Modulation and Demodulation3.1 Frequency modulation (FM): Basic concept, mathematical analysis,frequency spectrum of FM wave, sensitivity, phase deviation and	14	27%

Course Academic Administration Plan – AC – Semester V- Electronics and Telecommunication Engineering

Page | 3

 6.1 PAM, PWM, PPM generation and detection 6.2 Delta modulation, adaptive delta modulation, principle, generation and detection 6.3 TDM and FDM basic concepts and block diagram 6.4 Applications of pulse communication 	8	15%
6.1 PAM, PWM, PPM generation and detection6.2 Delta modulation, adaptive delta modulation, principle, generation and detection	8	15%
6.1 PAM, PWM, PPM generation and detection6.2 Delta modulation, adaptive delta modulation, principle, generation	8	15%
Pulse Modulation and Demodulation		
5.2 Sampling techniques, aliasing error, and aperture effect		
Sampling Techniques5.1 Theorem for low pass and band pass signals, proof with spectrum, Nyquist criteria	4	8%
4.4 Single and independent sideband (SSB and ISB) receivers		
4.3 FM receiver circuits, comparison with AM receiver		
4.2 AM receiver circuits and analysis, simple AGC, delayed AGC, forward AGC, and communication receiver	10	19%
4.1 TRF, Super-heterodyne receiver, receiver parameters, and choice of IF.		
3.5 Applications of FM and PM Radio Receivers		
discriminator, ratio detector, Phase lock loop(PLL) FM demodulator, amplitude limiting and thresholding, comparison between FM		
3.4 FM demodulation: Balance slope detector, Foster-Seely		
3.3 Phase modulation (PM): Principle and working of Transistor direct PM modulator and relationship and comparison between FM and PM		
Transmitter, noise triangle in FM, pre-emphasis and de-emphasis.		
3.2 Varactor diode modulator, FET reactance modulator, stabilized reactance modulator-AEC Direct EM transmitter indirect EM		
waves, deviation ratio, narrow Band FM, and Wide Band FM.		
	 3.2 Varactor diode modulator, FET reactance modulator, stabilized reactance modulator-AFC, Direct FM transmitter, indirect FM Transmitter, noise triangle in FM, pre-emphasis and de-emphasis. 3.3 Phase modulation (PM): Principle and working of Transistor direct PM modulator and relationship and comparison between FM and PM 3.4 FM demodulation: Balance slope detector, Foster-Seely discriminator, ratio detector, Phase lock loop(PLL) FM demodulator, amplitude limiting and thresholding, comparison between FM demodulators, comparison between AM, FM and PM. 3.5 Applications of FM and PM Radio Receivers 4.1 TRF, Super-heterodyne receiver, receiver parameters, and choice of IF. 4.2 AM receiver circuits and analysis, simple AGC, delayed AGC, forward AGC, and communication receiver 4.3 FM receiver circuits, comparison with AM receiver 4.4 Single and independent sideband (SSB and ISB) receivers 5.1 Theorem for low pass and band pass signals, proof with spectrum, Nyquist criteria 5.2 Sampling techniques, aliasing error, and aperture effect 	bandwidth requirement of angle modulated waves, deviation ratio, narrow Band FM, and Wide Band FM.3.2 Varactor diode modulator, FET reactance modulator, stabilized reactance modulator-AFC, Direct FM transmitter, indirect FM Transmitter, noise triangle in FM, pre-emphasis and de-emphasis.3.3 Phase modulation (PM): Principle and working of Transistor direct PM modulator and relationship and comparison between FM and PM3.4 FM demodulation: Balance slope detector, Foster-Seely discriminator, ratio detector, Phase lock loop(PLL) FM demodulator, amplitude limiting and thresholding, comparison between FM

2.b Prerequisite Courses

No.	Semester	Name of the Course	Topic/s
1	Ш	Analog Electronics-I	Basic working of Transistor and FET
2	IV	Signals and systems	Fourier Transform

2.c Relevance to Future Courses

No.	Semester	Name of the Course
1	VI	Digital Communication
2	VI	HDTV
3	VII	MCS

2.d	Real Life Application Mapping – Mention Application from Very Common Day to Day Life

No.	Real Life Application Mapping with the Course
1	AM and FM Transmission
2	Digital Communication systems
3	Television Systems

3. Past Results – Division-Wise and Topic-Wise Result Based Analysis

Details	Target - Dec 2017	Dec 2016	Dec 2015	Dec 2014
Course Passing % – Average of 3 Divisions	100%	97.66%	97.54%	93.52%
Marks Obtained by Course Topper (mark/100)	95	94	92	91

	Division A		Division B		Division C	
Year	Initials of Teacher	% Result	Initials of Teacher	% Result	Initials of Teacher	% Result
Dec 2016	BRB	96.3%	BRB	98.61%	PCR	100%
Dec 2015	BRB	98.66%	ANJ	97.10	ANJ	96.11%
Dec 2014	BRB	94.52%	SMP	89.85%	BRB	96.5%

Topics which affect	Module	Recommendations to overcome these issues & improve result in future
results negatively	Number	Recommendations to overcome these issues & improve result in future
Proof of Sampling	5	Basics of Fourier Transforms to be revised.
theorem		

All the Learning Resources – Books and E-Resources

4.a

4

List of Text Books (T – Symbol for Text Books) to be Referred by Students

Sr. No	Text Book Titles	Author/s	Publisher	Edition	Module Nos.
1	Electronics Communication System	Kennedy and Davis	Tata McGraw Hill	Fifth edition	1, 2
2	Electronic Communication Systems	Wayne Tomasi	Pearson Education	Fifth edition	1, 2, 3, 4
3	Electronic Communication	Dennis Roddy and John Coolen	Prentice Hall	Third Edition	1,2,3,4

Course Academic Administration Plan – AC – Semester V- Electronics and Telecommunication Engineering P a g e | 5

List of Text Books (R – Symbol for Reference Books) to be Referred by Students 4.b

Sr. No	Reference Book Titles	Author/s	Publisher	Edition	Module Nos.
1	Modern Digital and Analog Communication system	B.P. Lathi, Zhi Ding	Oxford University Press	Fourth edition	1,2
2	Principles of Communication Systems	Herbert Taub and Donald Schilling	Tata McGraw-Hill	Third edition	1,2,3,5,6
3	Communication Systems: Analog and Digital	P. Sing and S.D. Sapre	Tata McGraw Hill	Third edition	1,2,3,6
4	Introduction to Analog and Digital Communication	Simon Haykin, Michel Moher	Wiley	Second edition	5,6

4.c

4.d

List of E - Books (E - Symbol for E-Books) to be Referred by Students

S r. N o	E- Book Titles	Author/s	Publisher	Edition	Module Nos.
1	Introduction to Analog and digital communications (http://moodle.najah.edu/pluginfile.php/104907/ mod_resource/content/1/An%20Introduction%20 to%20Analog%20and%20Digital%20Communicat ions%2C%202nd%20Edition%20by%20Simon%20 Haykin.pdf)	Simon Haykin, Michael Moher	John Wiley & Sons, Inc	Second	1,2,3,4,5,6
2	Communication systems Engineering (http://www.ee.iitm.ac.in/~giri/pdfs/EE4140/textb ook.pdf)	John Proakis, Masoud Salehi	Pearson Education International	Second	1,2,3,6
3	Analog Communication (https://www.smartzworld.com/notes/analog- communication-system-ac/)	JNTU	Smartzworld	First	1,2,3,4,6
4	Analog Communication (https://www.tutorialspoint.com/analog_communi cation/analog_communication_tutorial.pdf)	Tutorials Point	Tutorials Point	First	1,2,3,4,5,6

Web Links and Names of Magazines, Journals, E-journals- [VIT is member of IIT Bombay Library]

Refer online journals subscribed in VIT library. You can also access IIT Bombay online library for journals from IITB campus.

Sr. No	Web-Links and Names of Journals and E-Journals Recommended to Students for this Course	Web-Links and Names of Magazines Recommended to Students for this Course	Mo dule Nos.
1	International journal on communication systems-wiley online library http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1131/issues	1.Electronics for You www.efymagonline.com/	2,3, 4,6
2	IEEE Communications Surveys & Tutorials http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739	2.Elector magazine https://www.elektor.com/magazin es/	3,4
3	International journal of analog and digital communication onlinelibrary.wiley.com/doi/10.1002/dac.v3:2/issuetoc	IEEE Communications magazine	4,6

Page | 6

		http://www.comsoc.org/commag/	
4	IEEE Spectrum : spectrum.ieee.org/	Digital communication magazine	6
		technav.ieee.org/tag/2758/digital- communication	

4.e

Module Best Available in - Tick the best resource [from <u>4.a</u> to <u>4.d</u> in this AAP] & give details

		Categ	ory (Pleas	se Tick Ma	ark) - √		Availal	ole In	
Module		Book		Maga-	Joui	mals	VIT Lib	orary?	Details of the Resource
No.	Text	Reference	E- Book	zine	Regular	E- Journal	Y	N	(i.e. Name, Chapter & Page No., etc.)
1	V						Y		Electronics Communication System By, Kennedy and Davis of Tata McGraw Hill, 5 th Edition. Chapter 1: Introduction to Comm. Systems, Pg. No: 1 to 14 Chapter 2: Noise, Pg. No: 15 to 32
2	V						Y		Electronics Communication System By, Kennedy and Davis of Tata McGraw Hill, 5 th Edition. Chapter 3: Amplitude modulation Techniques, Pg. No: 33 to 66 Chapter 7: Radio Transmitters and Receivers (For AM Demodulators) , Pg. No: 161 to 164
							Y		Electronics Communication System By, Kennedy and Davis of Tata McGraw Hill, 5 th Edition. Chapter 4: Angle modulation Techniques, Pg. No: 67 to 103
3	V								Electronic Communication Systems By Wayne Tomasi of Pearson Education Fifth edition. Chapter 7: Angle Modulation Transmission (For FM Modulator) Pg. No: 273 to 294 Chapter 8: Angle Modulation reception and FMs Stereo(For FM Demodulators) Pg. No: 295 to 310
4	V			1			Y		Electronics Communication System By, Kennedy and Davis of Tata McGraw Hill, 5 th Edition. Chapter 7: Radio Transmitters and Receivers, Pg. No: 140 to 186

							Electronic Communication Systems By Wayne Tomasi of Pearson Education Fifth edition. Chapter 8: Angle Modulation reception and FMs Stereo Pg. No: 295 to 330
5		V				Y	Introduction to Analog and Digital Communication by Simon Haykin, Michel Moher of Wiley Second edition Chapter 4: Sampling Process, Pg. No: 134 to 154
6	V					Y	Electronics Communication System By, Kennedy and Davis of Tata McGraw Hill, 5 th Edition. Chapter 5: Pulse Modulation Techniques, Pg. No: 104 to 115 Electronic Communication Systems By Wayne Tomasi of Pearson Education Fifth edition. Chapter 11: Digital T- Carriers and Multiplexing Pg. No: 431 to 442
4.f	We	b Links for	Online Not	es/YouTub	e/VIT Digita	l Content	VIT Lecture Capture/NPTEL Videos

No.	Websites / Links	Module Nos.
1	NPTEL series: Analog Communication by Prof. Surendra Prasad, Department of Electrical	1,2,3,4,5,6
	Engineering ,IIT Delhi	
	https://www.youtube.com/watch?v=TPm0XSPxId8	
2	https://www.youtube.com/watch?v=G9Ue8Edx7TQ	1
3	https://www.youtube.com/watch?v=WcTMbJ1rSHI	1
4	https://www.youtube.com/watch?v=fGf_ng7qljl	2
5	https://www.youtube.com/watch?v=UwGNDIIhWj8	2
6	https://www.youtube.com/watch?v=-ccrXpAJgjs	2
7	https://www.youtube.com/watch?v=4nyNJXEVB-o	2
8	https://www.youtube.com/watch?v=e_gTCU2fnD8	2
9	https://www.youtube.com/watch?v=QEubAxBfqKU	2,3
10	https://www.youtube.com/watch?v=X9geo28ST7g	3
11	https://www.youtube.com/watch?v=X9geo28ST7g	3

Course Academic Administration Plan – AC – Semester V- Electronics and Telecommunication Engineering P a g e | 8

https://www.youtube.com/watch?v=AQf7XwuZM	3
https://www.youtube.com/watch?v=G5_zul5wrTY	3
https://www.youtube.com/watch?v=dTEOVD0eBsM	3
https://www.youtube.com/watch?v=kaNXLwfg_RA	4
https://www.youtube.com/watch?v=-Yr3CvrRQyw	4
https://www.youtube.com/watch?v=vbjC-aCmMUM	5
https://www.youtube.com/watch?v=vJ8V8ipSZ50	5
https://www.youtube.com/watch?v=TM47sEXeaj8	6
https://www.youtube.com/watch?v=h8GamclaTEM	6
	https://www.youtube.com/watch?v=G5_zul5wrTY https://www.youtube.com/watch?v=dTEOVD0eBsM https://www.youtube.com/watch?v=kaNXLwfg_RA https://www.youtube.com/watch?v=-Yr3CvrRQyw https://www.youtube.com/watch?v=vbjC-aCmMUM https://www.youtube.com/watch?v=vJ8V8ipSZ50 https://www.youtube.com/watch?v=TM47sEXeaj8

4.g

Recommended MOOC Courses like Coursera / NPTEL / MIT-OCW / edX etc.

Sr. No.	MOOC Course Link	Course conducted by – Person / University / Institute / Industry	Course Duration	Certificate (Y / N)
1	https://www.openlearning.com/courses/principles- of-communication-engineering	Open Learning	Self Paced	Y
2.	https://onlinecourses.nptel.ac.in/noc17_ec11/preview	NPTEL, Prof. Goutam Das, IITKGP	July 24,2017 - October 13,2017)(12 Weeks)	Y(On registering for exams)
3	https://swayam.gov.in	SWAYAM, Prof. Goutam Das, IITKGP	JULY-OCT 2017	Y

4.h Recommended Value Added Courses (VAC)

Sr.	Name of the Value Added Course	Conducted by – Person /	Course	Certificate
No.		Institute / Industry	Duration	(Y / N)
1	Fundamentals of Radio communication and Receivers	AIR,Malad	3 weeks	Y

4.i Study Material to be Distributed among Students

	Tick if distributed among students										
GQ	Other (Write Details)										
√	\checkmark	\checkmark	\checkmark	\checkmark	Paper Solutions						

5. Consolidated Course Lesson Plan

				From (date/month/year)	To (date/month/y	ear)	Total N	umber of Weeks
Se	emester D	Duration		10/07/2017	10/07/2017				14
Week	Lecture no.	Module No.	Lec	ture Topics / IA 1 and IA 2 / BSA p to be covered	lanned	Actual date of Completio n	COs		commended ewing / Reading Chapter No. / Page Nos./ Books/ Web Site
	1 to 2	NA	Stuc	demic Administration – Constitu ly, Scheme of Marking / Grading a essment.			NA	NA	NA
1	3 to 4	1	Bloc Sign com	c communication system : k diagram, Electromagnetic spectra al Bandwidth and power, Types of munication channels, Noise in munication systems,			CO1	NA	T1: Chapter 1: Pg. 1 to 12 Chapter 2: Pg. 16 to 20 https://www.yo utube.com/wat ch?v=G9Ue8Ed x7TQ
	5 to 6	1	Figu	al-to-Noise ratio, Noise factor and re, Friiss Formula for Noise factor, valent Noise Temperature ,Proble			CO1	NA	T1: Chapter 2 : Pg. 20 to 28 https://www.yo utube.com/wat ch?v=WcTMbJ 1rSHI
2	7 to 8	2	Basi moc wav	plitude modulation and demodu c concept, signal representation, r dulation, modulation, spectrum, eform, modulation index, bandwic age distribution and power calcula	eed for Ith,		CO2	NA	T1: Chapter 3 : Pg. 33 to 37 https://www.yo utube.com/wat ch?v=fGf_ng7q ljl
3	9 to 10	2	mod	DSBFC Spectrum, waveforms, dulation index, bandwidth, voltage ibution, and power calculation.			CO2	NA	T1: Chapter 3 : Pg. 38 to 41 https://www.yo utube.com/wat ch?v=UwGNDII hWj8

Course Academic Administration Plan – AC – Semester V- Electronics and Telecommunication Engineering P a

P a g e | 10

	11 to 12	2	2.3 DSBFC: Principles, modulating circuits, low level and high level transmitters.	CO2	NA	T1: Chapter 3 : Pg. 52 to 61
						https://www.yo utube.com/wat ch?v=QEubAxB fqKU
	13 to 14	2	DSB suppressed carrier:- Multiplier modulator, nonlinear modulator, and switching modulator	CO2	NA	T1: Chapter 3 : Pg. 42 to & 55 to 59
4	15 to 16	2	Single Side Band (SSB):-Principle, Filter method, phase shift method and third method	CO2	NA	T1: Chapter 3 : Pg. 45 to 49 https://www.yo utube.com/wat ch?v=- ccrXpAJgjs
	17 to 18	2	Quadrature amplitude modulation (QAM), Independent sideband (ISB) and Vestigial Side Band (VSB) principles and transmitters	CO2	NA	T1: Chapter 3 : Pg. 49 to 52 https://www.yo utube.com/wat ch?v=4nyNJXE VB-o
5	19 to 20	2	 2.4 Amplitude demodulation: Diode detector, practical diode detector, and square law detector. 2.5 Applications of AM and use of VSB in broadcast television 	CO2	NA	T1: Chapter 7 : Pg. 161 to 164 https://www.yo utube.com/wat ch?v=e_gTCU2 fnD8
6			IA TEST 1		NA	
0			OPEN BOOK TEST		NA	
7	21 to 22	3	Angle Modulation and Demodulation3.1 Frequency modulation (FM): Basicconcept, mathematical analysis, frequencyspectrum of FM wave, sensitivity	CO2	NA	T1: Chapter 4 : Pg. 67 to 71 https://www.yo

Course Academic Administration Plan – AC – Semester V- Electronics and Telecommunication Engineering P a g e | 11

			TAKE HOME TEST			ch?v=X9geo28 ST7g
	23 to 24	3	phase deviation and modulation index, frequency deviation and percent modulated waves, bandwidth requirement of angle modulated waves, deviation ratio	CO2	NA	T1: Chapter 4 : Pg. 75 to 78 https://www.yo utube.com/wat ch?v=X9geo28 ST7g
8	25 to 26	3	narrow Band FM, and Wide Band FM. 3.2 Varactor diode modulator, FET reactance modulator, stabilized reactance modulator- AFC, Direct FM transmitter, indirect FM Transmitter,	CO2	NA	T1: Chapter 4 : Pg. 79, Pg. 86 to 97 T2: Chapter 7 : Pg. 273 to 278 https://www.yo utube.com/wat ch?v=dTEOVD 0eBsM
	27 to 28	3	noise triangle in FM, pre-emphasis and de- emphasis. NPTEL VIDEOS	CO2	NA	T1: Chapter 4 : Pg. 80 to 83 https://www.yo utube.com/wat ch?v=AQf7Xw uZM
9	29 to 30	3	3.3 Phase modulation (PM): Principle and working of Transistor direct PM modulator and relationship and comparison between FM and PM	CO2	NA	T1: Chapter 4 : Pg. 72 to 74 https://www.yo utube.com/wat ch?v=dTEOVD 0eBsM
	31 to 32	3	3.4 FM demodulation: Balance slope detector, Foster-Seely discriminator, ratio detector, Phase lock loop(PLL)	CO2	NA	T1: Chapter 7 : Pg. 165 to 177
10	33 to 34	3	FM demodulator, amplitude limiting and thresholding, comparison between FM demodulators, comparison between AM, FM and PM. 3.5 Applications of FM and PM	CO2	NA	T1: Chapter 4 : Pg. 166 to 168
			(Students Presentation) tration Plan – AC – Semester V- Electronics and Telecommu			https://www.yo utube.com/wat P a g e 12

Course Academic Administration Plan – AC – Semester V- Electronics and Telecommunication Engineering

Page | **12**

						ch?v=G5_zul5 wrTY
	35 to 36	4	Radio Receivers4.1 TRF, Super-heterodyne receiver, receiverparameters, and choice of IF.	CO3	NA	T1: Chapter 7 : Pg. 146 to 161
			(Students Presentation)			T2:Chapter 8 : Pg. 296 to 298
						https://www.yo utube.com/wat ch?v=kaNXLwf g_RA
	37 to 38	4	4.2 AM receiver circuits and analysis, simple AGC, delayed AGC, forward AGC (Students Presentation)	CO3	NA	T1: Chapter 7 : Pg. 161 to 164
11			TECHNICAL CROSSWORD SOLUTION			https://www.yo utube.com/wat ch?v=Xqiyvv2 Maf0
	39 to 40		communication receiver	CO1 CO2 CO3 CO4	NA	Internet
	41 to 42	4	4.3 FM receiver circuits, comparison with AM receiver4.4 Single and independent sideband (SSB and ISB) receivers	CO3	NA	T1: Chapter 7 : Pg. 177 to 181
			(Students Presentation)			https://www.yo utube.com/wat ch?v=mEt0SRG 0-Nw
12	43 to 44	5	Sampling Techniques 5.1 Theorem for low pass and band pass signals, proof with spectrum, Nyquist criteria (Students Presentation)	CO4	NA	R4: Chapter 4 : Pg. 134 to 160
						https://www.yo utube.com/wat ch?v=vbjC- aCmMUM
13	45 to	5	5.2 Sampling techniques, aliasing error, and aperture effect	CO4	NA	R4: Chapter 4

Course Academic Administration Plan – AC – Semester V- Electronics and Telecommunication Engineering

						148
						https://www.yo utube.com/wat ch?v=vJ8V8ipS Z50
	47 to 48	6	Pulse Modulation and Demodulation6.1 PAM, PWM, PPM generation and detection6.2 Delta modulation, adaptive delta modulation, principle, generation and detection(Students Presentation)	CO4	NA	T1: Chapter 5 : Pg. 104 to 113 https://www.yo utube.com/wat ch?v=TM47sEX eaj8
	49 to 50		Guest Lecture	CO1 CO2 CO3 CO4	NA	
14	51 to 52	6	6.3 TDM and FDM basic concepts and block diagram6.4 Applications of pulse communication	CO2	NA	T2: Chapter 11: Pg. 431 to 442 https://www.yo utube.com/wat ch?v=h8Gamcl aTEM T2: Chapter 11: Pg. 442
	53 54		Pop Quiz – Based on entire syllabus of Analog communication(AC) University paper solutions	CO1 CO2 CO3 CO4	NA	

Assignments / Tutorials Details (must attach print out of all questions together with AAP)

Assignment No.	Title of the Assignments / Tutorials	СО Мар	Assignments given to Students on	Date of Submission
1	Handwritten Assignment : Basic communication system	CO1	24/07/17	31/07/17
2	Take home test(THT): Problems on Noise, Modulation	CO1, CO2	22/08/17	23/08/17
3	Students Presentation	CO1, CO2, CO3, CO4	12/09/17 to 04/10/17	12/09/17 to 04/10/17
4	Pop Quiz/ Technical Crossword	CO1, CO2, CO3, CO4	16/10/17	16/10/17

Analysis of Assignment / Tutorial Questions and Related Resources

nt No.	Vo.	7	Гуре* (/)			Based on #		Questic	on Type (√)
Assignment	Week No.	R	UQ	OBT	Module No.	Text Book	Reference Book	Other Learning Resource	MU EQ	Thought Provoking
1	3	V	-	-	1	T1	-	-	√	-
2	7	V	-	-	1,2,3	T1, T2	-	-	√	\checkmark
3	10	-	V	-	1, 2, 3, 4 ,5, 6	T1, T2	R4	-	-	\checkmark
4	15	-	V	-	1, 2, 3, 4 ,5, 6	T1, T2	R4	-	V	V

7.

6.

Internal Assessment / Other Class Test / Open Book Test (OBT)/Take Home Test (THT)Details

Tests	IA Dates	Module No.	СО Мар	IA Question Paper Pattern	Policy
1 st IA Test	16/08/2017	1, 2, 3	CO1, CO2	Q1 – One line questions - 10 Marks	No IA Re-test
2 nd IA Test	Last week	4, 5, 6	CO2, CO3, CO4	Q2 – 1 Theory or numerical 5 Marks Q3 – 1 Theory or numerical 5 Marks 20 marks each for IA 1 & 2	IA is a Head of passing *
Class test1,(OBT)	09/08/2017	1, 2, 3	CO1, CO2	Class test 1 based on IA1 syllabus	No Re-test
Class test2	03/10/2017	4, 5, 6	CO2, CO3, CO4	Class test 2 based on IA2 syllabus	No Re-test

* IA failures will have to appear for re-test in next semester

Course Academic Administration Plan – AC – Semester V- Electronics and Telecommunication Engineering P a g e | 15

8.a Practical Activities – Regular Experiments

Practical No.	Module No.	Title of the Regular Experiment	Concepts to be highlighted	CO Map	Audit / Quality Rate (0 to 4)
1	2	Analysis of Amplitude Modulation and Demodulation and Calculation of Modulation Index.	Amplitude Modulation and Demodulation	CO1	4
2	3	Study of Frequency Modulation & Demodulation.	Frequency Modulation & Demodulation	CO1	4
3	5	Analysis of Signal Sampling and reconstruction	Sampling and reconstruction	CO2	4
4	6	Study and analysis of Pulse Modulation (a) Pulse Amplitude Modulation & Demodulation (b) Pulse Width Modulation & Demodulation (c) Pulse Position Modulation & Demodulation	PAM, PPM, PWM	CO2	4
5	3	Design of Preemphasis and Deemphasis circuit in FM	Preemphasis and Deemphasis	CO1	4
6	3, 4	Capture of Live FM signal and display of live FM Channels	Frequency Modulation	CO1	4
7	6	Study of Time Divison Multiplexing and Demultiplexing	Time Divison Multiplexing	CO3	3
8	2, 3	 A. Simulation of Amplitude Modulation and Demodulation using MATLAB. B. Simulation of Frequency Modulation and Demodulation using MATLAB. 	Amplitude Modulation	CO1, CO4	4

8.b Practical Activities – Newly Added Experiments

Practical No.	Module No.	Title of the Newly Added Experiments	Concepts to be highlighted	СО Мар	Audit / Quality Rate (0 to 4)
1	2	To generate amplitude modulation using Transistor BC-547 and calculate modulation index for different amplitude of modulating signal	Amplitude modulation	CO1	4
2	3	To perform frequency modulation and demodulation using Octave	Frequency Modulation	CO1	4

8.c Practical Activities – PBL Experiments

Practical	Module	Title of the DPL Experiments	Concepts to	CO	Audit / Quality
No.	No.	Title of the PBL Experiments	be highlighted	Мар	(0 to 4)
1	6	Design a circuit to generate Pulse width modulation using Op-Amp and comment on the output obtained	Pulse width modulation	CO2	4

Course Academic Administration Plan – AC – Semester V- Electronics and Telecommunication Engineering

Page | 16

Rubric for Grading and Marking of Term Work (inform students at the beginning of semester)

Lecture + Practical (% Attendance) & Marks	Assign- ments	Lab / Practical Performance	Lab Journal Assessment	Class Tests (Other than IA)	Tutorial	Other (1) specify	Other (2) specify	Total
5 Marks	5 Marks	5 Marks	5 Marks	5 Marks	NA	NA	NA	25 Marks (CE-I)

10.

9.

Beyond Syllabus Activities for Gap Mitigation

No.	Type of the Activity	Activities	Details
1	Interaction with Outside	Guest Lecture / Workshops	Guest Lecture by Mr. Kulkarni, Worli, Doordarshan on topic On Practical aspects of Analog communication
2	World	Industrial Visit	NA
3		Class Tests – (other than IA)	Class test based on syllabus for IA 1 in 4 th week Class test based on syllabus for IA 2 in 14 th week
4	Test and Assessments	Mini Projects	NA
5	7.5565511161115	Pop Quiz	Pop quiz based on entire syllabus in 15 th week
6		Mobile App Based Quiz	To be conducted based on module 2,3,4
7		Poster Presentation	Poster presentation under lab activity in 3 rd week
8		Minute Papers	It will be given at the start of few lectures to get insights of understanding of students
9	Collaborative and Group	Students Seminar	Students Seminar on beyond syllabus topics in a group of 5 students per topic to be conducted from 10 th to 13 th week
10	Activity	Students Debates	NA
11		Panel Discussion / Mock GD	NA
12		Mock Interview	NA
13		Technical Crossword	Technical Crossword in 13 th week based on entire syllabus
14	Co-curricular	MOOC-NPTEL/Coursera Videos	NPTEL series: Analog Communication by Prof. Surendra Prasad, Department of Electrical Engineering ,IIT Delhi https://www.youtube.com/watch?v=TPm0XSPxId8
15	Courses	Value Added Courses	Fundamentals of Radio communication and Receivers by AIR, Malad
16		Lecture Capture Usage	NA

Course Academic Administration Plan – AC – Semester V- Electronics and Telecommunication Engineering P

Page | 17

Consolidated Academic Administration Plan Prepared by --

Prof Beena R Ballal Faculty 1

Mr Abhijeet Dharmadhikari AGM. Vodafone India Ltd. External Industry Mentor

Pro

Prof Franita Padhye VIT Cluster Mentor Name

Prof. Harshada A. Rajale Faculty 2

Prof Deepak Karia Professor,SPIT External Academic Mentor

Dr. Saurabh Mehta

Head Electronics and Telecommunication Engineering Dept

Total Mari	111	Examiner	
Question	a of no.	Moderator	
		ReAssessor	
pace for Marks	Question No.		START WRITING HERE
£ •		5	Colution of IA-2
		2	
	45 - C	Schjed -	Analog communication (Ac)
			m: TE, Som V
			:- Electronics & Telecomm (FXTC)
		Date 4 Tas	t:- 07/10/2017
		Properto	By:- Beena R. Ballal
2			
	G1 (G)		the various disadvantages q
		Dolte- Ma	dutation.
			a a Mar wade baties and
			extend Distortion and Granular Noise
		Amp	
			GRANULER NOISE
			Stope
			Exect (CCC)
			(Starcaso Approx
			(S(step 5130)
		÷.	(CStep - S-)
	•		
		<u></u>	Time
			allord Distortion
			pe of control signal x(t) is much higher
		LOUL DED JUE	, 2(4) over a long duration then 2(t) Proceed by
a la	,		Prepared By :- Beena . R. Ballet
and an and the second second		Constant Pro-	Scanned by CamScanner

Question START WRITING HERE No. will not be able to follow a (t) at all. The difference botween x(t) and x'(t) is called Slope averland distortion. This error occurs when slope q o(t) is much larger than slope of x'(t) (ii) GERDULAE NOISE when the input signed act) is relatively constant in amplitude, the approximated Signal 2'(+) will heat above and balow orth) as shown in Fig. It increases with increases in step size & To reduce granular noise, stop size should be as small as possible. gillb) Give the practical values of AM and FM braddensting Jeanges State their IF Enequency values. AM Range 535KHZ - 164N KHZ EM Range 88 - 108 MHZ AM IF Frequency :- 455 KHZ EM_IF Frequency: - 10.7 MHZ 3.1(1) Define Selectivity, Sonsitivity, Fidelity and image Frequency rejection related to readio receives Selectivity sepectivity of the Roceiver is defined as ability to reject adjacent (unwanted) signals Propored By:-Beene R. Bellet

Scanned by CamScanner

Examiner Total Marks of Moderator Question no. ReAssessor START WRITING HERE Question Space for Marks No. Sensitivity Sitivity & Radio Receiver is defined as ability emplipy work signate It is often defined interms ROCCINCS TAPLY tost roust be applied to to give Standard output power. It is NOW IN. expressed in un or in deci orten Fidelity reproduce (orrectly It is ability of secencer +0 equally High fidelity modulating dragoncie required to produce good quality rousic faithfully ìs Salectivity Sensitivity 9 100 15 30 14 5 13 GL E th 12 40 11 20 10 -4-30-20-10 0 10 20 30 Det erly. 12.00 Freque 1000 600 batezoen TDM and EDM Differenticle c1(d) FDID TDM 0.36 Signals to be pultiplesed 1. Signals to be multiplexed -t-the in time domain but they added ano takes full BW time domain occury diff slots in drag domaig is zeq 2 synchronization is not roqued SUPERIZONIZE 2. assmitter & Rocervor boto Ta nSmitter & Roleiven Yezy Complex 3 Receptives complex circuity 3 (K THS all FDM ch's are 4. Die to lading Fading Fers apeiled Dieto 4 TIPH channels are apported Prepared By -Beena . R. Ballal Page | 21

ReAssessor Question Space for START WRITING HERE Marks No. gie List different types of scopling Techniques (1) I deal Sampling. (2) Penetical Sampling (i) Flat top Sampling (1) interweat Sampling or chopper Sampling. Q1(1) State Nyquist Sampling Themson What is Alicsing Error A continuous time signed x(t) can be completely represented in its sampled form and recovered back from Sampled form if Sampling frequency to is greater than on equal to twice maximum frequery of continuous time signed I(t). JS ZRW Alicsing Easton If signed I(1) is not structly bandlimited and if Sampling the mean is not satisfied i.e. to < 2H then error called Aliasing or foldover error accuss In this high dreadency in the spectrum of Oniginal signal x(t) taking on the identity of lower dradioner intre spectrum of sampled Signal Proposed By-Beena R. Ballad

Explain Pro-emphasis and Te-emphasis used in FM Noise Triangle should that raise has a greater effect on higher modulating prograncy then on the locan dragency. Thus if higher dragencies ware antificially prosted at the transmitter and correspondingly Cotatile secretyers an improvement in poise impunity Can be obtained The boosting of higher modulating drequency accordance with pro-assanged cursule termedas pro-emphasis. It is corried out prior to EM modulation process. THis basically a High pass Filter De-emphasis circuit is the one in which astificially boastad high pagency signals are brought back to their Original amplitude Here signals are do-boostad Sothet they are buck to original signal 1 output L=0.75H - Siope & ABloctor 3dB-R=10KA $\sim dB$ Aŕ HP JIZZHZ . Freq (i)CITCLIT (11) Curre Prie emphasis De-emphasis is a Low pass Filter and is performed after FM Demodulation at the Raleinor of Fm Prepared By: Beena R. Balld.

Do-emphasis **小01P** IP 75KRL CINF) . odb 6 dB octave. 348 (i) Circuit I-nag. 2122HZ. (11) CLONE g. (h) what is AGC? what are different types & AGC. Show-them with the help of graph Signals from Vanious radio stations reaching at the receiver input are not of some strongth. AGE chickis automatic acin control is used to adjust the gain of the Receiver automatically to keep receiver output Constant insrespective of strength of Mart Signal Types & AGC (1) Simple AGC (11) Delayed AGC , NO AG C Detryed Mac Roceivon OP voltage Ideal AGC Simple HGC Strength & incoming Signal Simple AGE is an improvement over NO AGE Case Jakyed AGE is Nerry class I deal AGE. Dalay ad AGE is used in high quality receivars like communication receivants Proposed By:-Beara R. Ballal. -Rois

Scanned by CamScanner

for Question START WRITING HERE cs No. gizca Ezplain with the help q reat black diag zon Superiore radyne receiver with waveforms at each point Receiting Antenna RF MIXer Detecto Amplifies Stage AF SIGNE Local 10 oscillate Sigml Audio & Amplifica Various disadvantages of twood Amplifice Radio Frequency (TRF) TO CONOT SI Signl Instability, Variation in Ba over tuning range and Insufficient selectivity at high prograncies, Poor adjacent channel rejection Can be overcamed by Superhotorodyne Receive Operation: AM signal is to consmitted and reaches to receiving antenna ates travelling torough the RE Stage It is an amplifier which is used to salect wanted signed and reject other wasted Signeds. It redu Prepared By-Beena R. Ballal

Question START WRITING HERE Marks No. the effect q noise. At the autput & RF stage -110 desired progency to is obtained Mixer It receives signeds dram RE couplifies at peg to and from local oscillator at prography to such that 10>15 Intermediate Fraquency (IF) Mixor will mix mose signals to produce Signal to to Called Internediate graquency (IF) IF = 10-15 Simultaneous tuning GRE complifier miscore and local asculation is achieved by garged tuning. If it is amplified by one or more stages of IF Amplifier This Signal is then deterted by deterter to recover original modulating signal. This is then amplified and applied to the loudspeaker. AGE (Actomatic Gain control) Controls the gains of RF and IE Amplifiers to maintain a constant output voltage level even when the signal level at the receiver input is fluctuating This is done by feeding a contacting de voltage to RE and IE amplifier . Amplitude of this de Nothage is proportional to the detector autput Propased By:-Beena . R. Bellat

ReAssessor Space for Question START WRITING HERE Marks No. 2(b) Explain generation and demodulation of PPM in detail with the help of real wavepounds In PPM amplitude and width of the pulses remains constant but the position of each pulse is varied accordance with amplitudes of Sampled Values of the modulating signal . Position of the pulses is changed with nespect to position of reference pulses. PPM pelsos can be depined from PWM pulsos as shown in Fig balow. It is noted that with increase in modulating voltage PPM petces Shift further W. z.t. repense The POH pulses Obtained at comparator asput are applied to manastable multivibrator which is regative edge thiggered. Comparator Monastable Input Signal t PPF7 2(1) Multivi bata Signal Scrutoch Ip Signal PISH Signal contrapponding to each trailing edge & PWM signal monostable output goes high . It remains high for fixed time decided by RC components Johonnation 15 Converged via change in position of pelsas Prepared By-Beena R. Ballal

Space for Marks	Question No.	START WRITING HERE
14		Detection qLPPH.
		PPM Putse
		Pulses Generator R Por Modult
		Reperence Signal
		Peder Gereneter
	2	Naisa (
		Noise consupted PPH wavepern is applied to pulse Generator fulse Government is applied to
<u> </u>		Resot pin of RS Flip Flop. A Fixed portion rejevence
		pulse is applied to sot (s) pin of RS FF. Dolection process is shown below.
		Conversions:-
		Deal and a secondorn
		Amp Ocveperm.
		() () () () () () () () () ()
		t t
		PCSM Output Componetor output
		\rightarrow_{t}
		Amp PPM output .
Na		
	į	Proposed By:-
Province of		Beena R. Ballat
	and the second second	

Moderator Question no. ReAssessor Space for Question Marks START WRITING HERE No. (2)Describe the operation of Foster Scaley Discriminator With the help & Phasez diagrams D сρ \bowtie ÉR3 (B 0 AF OLTPUT Noltage : RFC Valb ₹R4 14 Both tured ₽ Foster-Socley Discriminator or Phase Discriminator is derived from balanced modulator Here Primary and secondary coinclings both are tured to some contradiograncy be of incoming signal This simplifies tuning process to a great extent and it will yield better line arity than the balanced Slope date tor Principle 2 operation: Even though primary and secondary circuits are tured to some centre prograncy, voltages applied to two divdes D, and D are not constant. They Yany depending on drequency of input signal. This is the to change in phase shift between primary and Secondary windings depending on input drequency Propared By:-Beans . R. Bellat

Space for Question START WRITING HERE Marks No. At the = te, tra individual output Nottages of diodes ل رنى will be equal & opposite Hence output Nottage is gone NO, - NO2 = 0. VCO TYNP ER. Equal Vites are intervites in 2 hells 7cz -<u>1</u> Усь Secondary Equivabrit Phasics diagram CIRCUIT tin=te For tin> te Phase shift between primary and secondory windings is such that output of D, is higher than that of D. Hence output voltage will be positive 1Vcb JUCH 50 Proposed By:-Bacha. R. Bella

201 Mary 530 31		Examiner	
otal Mark Question		Moderator	
		ReAssessor	
pace for Marks	Question No.		START WRITING HERE
Marks	NO.		
		For tin te	whit is such that output (D is hid
		Here the prese	shipt is such that output of D is high
		Than their q - u	
		K	
			Jug 1
		2	
			K VI
			N i
		= 1 1/41	
		-1 Va	
			A A
		Discription Pa	sponse is shown balaw:-
		J/BCemints.ness_nes	
			A output voltage.
	-	<u>k</u>	Beren
		2	D I Jose t alega t
		Advantages:	
		line coity is both	
	. 2.		align, ture Since only two tured
		arcute are po	Propored By - Bacha: R. Balld.

START WRITING HERE No. Disadvantages:-It does not provide amplitude limiting as a Tosulty which presence & poise on other spunious amplitude resistions tend to produce excrements Since demodulator output tends to respond to them (d) In a broadcast Superheterodyne receiver barling DO RE ampliphere loaded & g antenna Coupling Circuit Cat the input to the mixer) is 100. (i) If the intermedial programy is 455 tHZ. Calledate image dequency and its rejection at loookhz and at 25 MHZ. (ii) In order to make the image drequery rejection as good at 25 mHz as it was at 1000 KHZ Calculate loaded of of RF amplifier which a receiver should have (i) (a) = 1000 KHZ 0x 25 mHz At 1000 KHZ Image Frequency, bsi = 15+2IF. 5= [1000+2×455] KHZ. bs: = 1910 KHZ Incge drequency rejection zatio, x = VI+6292 Libera q = bsi - bs ts. bsi <u>9 = 1910 - 1000</u> 1000 1910. 1910. Prepared By:-Beena .R. Ballet B | 30

Examiner olal Marks of Moderator Question no. ReAssessor Space for Question START WRITING HERE Marks No. 9= 1.3865 $\alpha = \sqrt{1 + (1:38)^2 + (100)^2}$ x = 138.60 AL 25 MHZ Incge Frequency, is= istZIF 15: = 25x10 + 2x455 × 103 15- - 25.91 MHZ 9 = 15. - 15 bs ts. <u>9 = 25.91 - 25</u> 25 25.91 9= 0.0715. x = 11+ 5262 x = VI+ (0:076) (100)2 X = 7.2195. (ii) we want to make image dreapeney rejection of secence as good at 25 Minz as it was fer DOOKHZ At 1000 KHZ Image drequency rejection was x=138.60 \$ g= 0.0715 Sold= 25 MHZ, 17.60 = V 1+ (0 + 15)2 × g2. \${EIF 0 Poop By Barra R. Balla **Hacke** k

	हेलेड हालगण ख	Examiner	
Total Marks Question n		Moderator	
		ReAssessor	
Space for (Marks	Question No.		START WRITING HERE
		/ @ =	4193841.
		Henreton	are beier of baceiver good at
		25 MHZ	should be 1938.41
			$x = \alpha_1^{l} \cdot \alpha_2$
			6 = x' x 7.22
			x'=19.2
		We know th	$cT \propto = 11 + g^{2}g^{2} = 1 + g^{2} \times (1386)^{2}$
			<u>`</u> <u>_</u>
			~ g = 268
			grad receiver would have some of por
		both tured	circuits ghas to be geometric mean of
		100 and 2	
		:. G =	V100.269 = 163.70 = 164
	G 3)	Chat is \$	Soptiliare Defined Radio (SDR)
	C	SDR is C	radio communication system where
		components	have been typically implemented in
		handware	(e.g. mixer, filters, emplifiers,
			demodulaters etc) are instead implementer
			of software on a personal computer
			ed system @ Brsic SDR system may
		consists q	possond computer equipped with sound
		Cand or a	otras analog-to digital converter procoeded
		by some	orm of RF Front end B) Software radio
		are signifi	centry utilized for military and cell phone
		Services	both of which must serve a wide ranisty
and the second second	8 11 -	A changin	g radio protocols in seal time.
Contra a			Proposed By:-
A REAL PROPERTY	Contraction of the second	States and the second	Beena R. Balla

Vidyalankar Institute of Technology www.vit.cdu.in	Internal Assessment Test Paper Audit Form					
Branch: EXTC	Semester: V	Subject: EME	Test No.1			
Syllabus/Units as per lesson Pla	an: Module-I , Module-II		Marks:20			
Time Duation:01 Hr		Time:				
		Paper resubmission date if <1	.0			
Date of Test::	Marks Display Date: (x+2)week					

Q.No.	Syllabus		Question	M ar	Questio n Type			CO Ma p to	Score Scale(0- 4)for All Question	
	Unit	Week	Question	ks	E Q	G Q	T P	Qu esti	Sel f Rev iew	Revi ewer
Q.1(a)	1	1	Write expression for Coulomb's law in vector form	2	\checkmark	\checkmark		Co1	3	3
Q.1(b)	1	2	Define electric flux density. Write its Unit.	2	V	V		Co1	3	3
Q.1(c)	1	4	Work done is independent of path taken. Justify.	2		\checkmark	\checkmark	Co1	4	4
Q.1(d)	1	1	What is the relation between electric potential and electric field intensity?	2		\checkmark		Co1	4	3
Q.1(e)	1	4	Define the term 'Potential Difference'	2 2	\checkmark	\checkmark		Co1	4	3
Q.1(f)	1	3	Find E due to $\rho_s = 5 \text{ nC/m}^2$ lies along x= 2 at origin.	2		\checkmark		Co1	3	3
Q.1(g)	1	3	Calculate charge density ρv if $\vec{D} = rsin\phi \widehat{a_r} + 2rcos\phi \widehat{a_{\phi}} + 2z^2 \widehat{a_z} C/m^2$.	2		\checkmark		Co1	4	4
Q.2(a)	1	2	Obtain expression for Electric field intensity due to infinite line charge at each and every point in space.	5		\checkmark		Co1	4	4
Q.2(b)	1	2	Find Electric field intensity at origin due to following charges configuration $\rho_L = 50$ nC/m lies along x= 1 and y = 2	5	\checkmark	V		Co1	4	4
Q.2(c)	1	2	Given $\vec{D} = zrcos^2 \emptyset \widehat{a_z} C/m^2$, Calculate the charge density at (1, $\pi/4$,3) and the total charge enclosed by the cylinder of raduis 1m with -2 \leq z \leq 2 m.	5	\checkmark	\checkmark		Co1	4	4
Q.2(d)	1	1	Two point charges Q_1 and Q_2 are located at (1,2,0) and (2,0,0) respectively. Find the relation between Q_1 and Q_2 such that the force on a test charge at the point P (-1,1,0) will have no x component.	5	V	V		Co1	4	3
Q.2(e)	1	3	Explain Gauss's law. Obtain its integral and point form.	5	\checkmark	\checkmark		Co1	4	4
Q.3	1	1	Justify 'Application of Gauss's law to non-symmetrical charge distribution tells us how flux density changes				\checkmark	Co2	4	4

Should Question be modified: No If Yes new Question/s

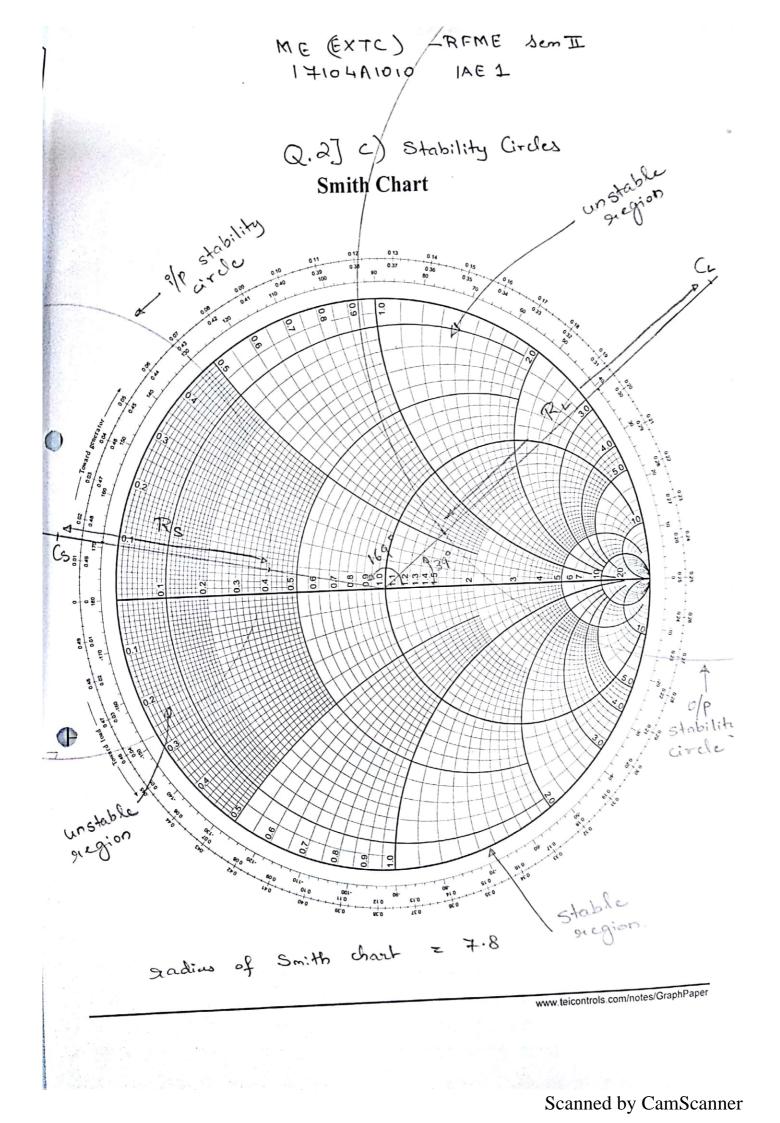
No.	Question	Marks
1		
2		
3		

Model solution and marking scheme submitted on:

Name of Teacher :	Subject Teacher	Reviewer
Name :	Pravin Patil, Prof. Dattatray Bade and Prof. Prathemesh Mistry	Pravin Patil
Signature :		

Vidyalankar Institute of 1 smith chart Internal Assessment Test Technology Branch **Test Date** Semester Div. Roll No. Student's Signature EXTC (ME) 24/212018 Т A 17104A1010 L1) aishung IA Test No. Subject 1 RFME Junior Supervisor's full Question signature with date : Student's Sign Total Examiners 1 2 3 No. After receiving the 20 Signature assessed answer sheet Marks (1)/aishus 2412/16 10 hull 10 obtained 20 28/2/2018 1) given potentially unstable transistor with 0) 12"1 S22 > 1 having stability circles plotted on Smith chart region for ofp stability The stable circle lies the inside stability circle for 5, > 7 The for 1/p stability stable region cizo lies inside ixele 4 stability > 1the unstable regions for both ip lie outside the stabili stability circles circles stability of 6) test Δ S11 S22 - S12 S21) <1 Δ 1 $-15_{11}|^2 - 1522|^2 + 14|^2$ 1 K = S12 S21 2 is unconditionally stable the device then will potentially else instabl be Pg.1

Importance of Impedance matching d) • Maximum power will be transferred from source to load and power loss will be minimum @ The resistive components which are sensitive to impedance matching like antenna er LNA et will improve signalto noise (SNR) statio of the system V3 The power distribution in the network will reduce the amplitude & phase errors. i) Transducer Gain (Gr) e GT = PL = power delivered to load Pars power available at source $G_{\tau} = \frac{1 - |\Gamma_{s}|^{2}}{|1 - |\Gamma_{s}|^{2}} \frac{|S_{21}|^{2}}{|1 - |\Gamma_{s}|^{2}}$ $\frac{|1 - \Gamma_{in} \Gamma_{s}|^{2}}{|1 - |\Gamma_{s} S_{22} \Gamma_{s}|^{2}}$ ii) Operating power gain (GP) Ph = power defixered to load Gr = Pin power as if to NW $G_{P} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}} \frac{|S_{21}|^{2}}{|1 - \Gamma_{P}P|^{2}}$ 2/


---3) Z1 = 50 SL Given Zin = 100 52 2/4 2 02 = Zin =100 2 0matching ckt . For quar section : LOGNE Z. ZL Zin 40.71 = 2 1 0 2 = 70-71 2 engths + Ζ, \geq in 2 2 100 2 = ZL 50 Z_{λ} Ξ Zin 7 100 = 1 Zin 100 V. 2] a) Z V2 9, 62 -4 V2+ . V, + 6, 92 V2-V.T 2. = 8 Considering Zo = 50 R 100 2 Cale. of Si 1000 2 50.22 Pg.3

2:0 = 100 + 50 2:0 = 150 52 = 150 - 50 S., = & Zin - Zo 150 + 50 Zin + Zo = S22 + due to S., = 0.5 NW Symmetry Calc of S21 & S12 2=50.0 2=100-2=100.52 2 = 502 V3 (V - 150 St \vee 1 $S_{21} = 2V_2 + S_{12} = 2V_1$ Ve. VS2 cale V, in terms of Vs, 50 2:0 = 5 150 2 $V_1 = 150$ $V_{51} = 0.25 V_{51}$ 50 + 150 cale of V2 in terms of Vs2 Vp2= 7100 2 N Pg.4

Scanned by CamScanner

1----V2 = 150 VS1 = 0.75 VS2 150+50 S12 = 2V1 4.7 V32 = 2 x 0.75 VSI VSI = 1.5 @ Due to S12 = S21 = 1.5 N/w Symmetry S = 0.8 ∠ -170° c 512 = 0·1 × 80° $S_{21} = 5.1 < 70^{\circ}$ S22 = 0.62 2-40° $\Delta = \left| S_{11} S_{22} - S_{12} S_{21} \right|$ $= (0.8 \times 0.62) - (0.1 \times 5.)$ = 0-496 - 0.51 y 0·4962150 - 0·512150 -= 0.014 $|\Delta < 2|$ $\mathcal{K} = 1 - |\mathbf{3}_{11}|^2 - |\mathbf{S}_{22}|^2 + |\Delta|^2$ 2 | SI2 S21 $= 1 - (0.8)^2 - (0.62)^2 + (0.014)^2$ 2 (0.1 x 5.1) = 0.023 Pg.5

X < 1The device is potentially unstable, op stability circle $\frac{(S_{22} - \Delta S_{11}^{*})^{*}}{|S_{22}|^{2} - |\Delta|^{2}}$ CL = $\frac{(0.62 \angle -40 - (0.014)(0.8 \angle 170))}{(0.62)^2 - (0.014)^2}$ 2 $\frac{(0.62 < -40 - 0.0112 < 170)^{*}}{(0.62)^{2} - (0.014)^{2}}$ 1 $(6-62)^2 - (0.014)^2$ = CL = 1-61 639-49 RL S12 S21 = [S22]2-1012 0-1 6 80° × 5-1670° 1 $(0.62)^2 - (0.014)^2$ R1 = 1.32 4150° - stable region is outside stability circle S. < 1

P/p stability circler $C_{s} = (S_{11} - \Delta S_{22}^{*})^{*}$ $|S_{11}|^{2} - |\Delta|^{2}$ $= (0.8 \angle -170^{\circ} - (0.014)(0.62 \angle 40))^{*}$ $(0.8)^{2} - (0.014)^{2}$ = 0.80 2 +169 $(0.8)^2 - (0.014)^2$ Cs = 1.25 20169 S12 S21 S11/2 - 10/2 Ro = = 0.1 < 80° × 5.1 < 70° $(0.8)^2 - (0.014)^2$ 2 0.79 L150° Rs S22 < 1 - stable region is entride etability circle. Calculations: $R_{L} = 1 - 32 \times 7 \cdot 8$ $C_{L} = 1.61 \times 7.8$ RL = 10.29 CL = 12.55. Co = 1.25 x 7.8 R6 = 0.79 ×7.8 C3 = 9.75 $R_{s} = 6.162$ Pg.7